Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonium monovanadate: a versatile and reusable catalyst for Friedel-Crafts alkylation and Michael addition of indoles

Ammonium monovanadate (NH4VO3) has been devoted as an efficient, commercially available, eco-friendly and reusable catalyst for the synthesis of bis(indolyl)methanes (BIMs), oxindole derivatives and also Michael adducts of indoles at 50 °C under solvent-free conditions. The reusability of this solid acid catalyst in addition with its selectivity has also been examined.

متن کامل

Ammonium monovanadate: a versatile and reusable catalyst for Friedel-Crafts alkylation and Michael addition of indoles

Ammonium monovanadate (NH4VO3) has been devoted as an efficient, commercially available, eco-friendly and reusable catalyst for the synthesis of bis(indolyl)methanes (BIMs), oxindole derivatives and also Michael adducts of indoles at 50 °C under solvent-free conditions. The reusability of this solid acid catalyst in addition with its selectivity has also been examined.

متن کامل

An allosteric photoredox catalyst inspired by photosynthetic machinery

Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be re...

متن کامل

Cascade photoredox/gold catalysis: access to multisubstituted indoles via aminoarylation of alkynes.

A new method for the synthesis of 3-arylindoles has been developed by visible light mediated dual gold/photoredox catalysis. This transformation has many features such as cascade catalysis, high efficiency, redox-neutral reaction conditions and good functional group tolerance. The reaction proceeds through the photoredox-promoted formation of an electrophilic arylgold(iii) intermediate that und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Organic Chemistry

سال: 2018

ISSN: 0022-3263,1520-6904

DOI: 10.1021/acs.joc.8b01146